COURS DE DATA MINING 10 : MODELISATION SUPERVISEE REGRESSION LINEAIRE

7 séances de 3 heures mai-juin 2007

EPF - 4^{ème} année - Option Ingénierie d'Affaires et de Projets Bertrand LIAUDET

10 : Modélisation supervisée - 2 : Regression linéaire	2
Présentation	2
La régression linéaire simple	2
La régression linéaire multiple	3
Qualité de la régression : la question du résidu	3
Lecture des sorties de Clementine	6
Récapitulatif	6
Statistiques descriptives	6
Corrélations	6
Récapitulatif	6
Mesures de l'ANOVA	6
Statistiques des résidus	6
Conclusion : principales méthodes de modélisation qui n'ont pas été abo	ordées7
Classification	7
Prédiction	7

10: MODELISATION SUPERVISEE

- 2: REGRESSION LINEAIRE

Présentation

La régression linéaire simple

La régression linéaire simple permet de mettre en relation deux variables continues : la variable cible Y et la variable explicative X.

Quelles que soient les variables continues X et Y, on a :

$$yi = a*xi + b + Ri$$

avec:

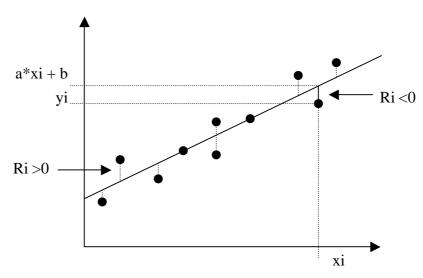
yi : valeur de Y pour l'individu i xi : valeur de X pour l'individu i

a et b : coefficients de l'équation de régression linéaire

Ri: résidu pour l'individu i

La partie « axi +b » est la composante déterministe du modèle.

La partie Ri est la composante stochastique appelée « erreur » ou « résidu ».



Remarque : des individus ayant la même valeur de X peuvent avoir des valeurs de Y différentes.

La droite Y = aX +b est la droite de corrélation linéaire. On dit qu'elle « ajuste » le nuage de points.

La régression linéaire multiple

La régression linéaire multiple suit le même principe que celui de la régression linéaire simple. Elle permet de mettre en relation une variable continue cible Y et plusieurs variables continues explicatives Xk.

Quelles que soient les variables Xk et Y, on a :

$$yi = a1*x1i + a2*x2i + a3*x3i + ... + ak*xki + b + Ri$$

avec:

yi : valeur de Y pour l'individu i xki : valeur de Xk pour l'individu i

ak et b : coefficients de l'équation de régression linéaire

Ri: résidu pour l'individu i

La partie « a1*x1i + a2*x2i + a3*x3i+ ... + ak*xki + b » est la composante déterministe du modèle.

La partie Ei est la composante stochastique appelée « erreur » ou « résidu ».

Remarque : des individus ayant les mêmes valeurs de Xk peuvent avoir des valeurs de Y différentes.

Qualité de la régression : la question du résidu

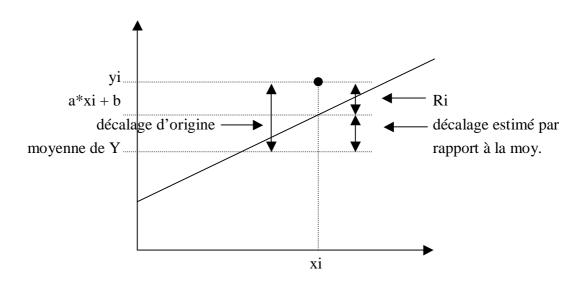
Technique

SRes: somme des Ri² (somme des résidus au carré).

SReg : somme des carrés des décalages entre le y estimé et la moyenne de Y

SDOM : somme des carrés des décalages entre yi d'origine et la moyenne de Y

Avec SDOM = SRes + SReg



EPF - 4ème année - IAP - Cours de Data mining -10 : Régressions linéaires - page 3/7- Bertrand LIAUDET

Méthode des moindres carrés

Elle consiste à chercher les coefficients « a » et « b » qui minimisent la somme des Ri².

RMSE

RMSE : root mean square error, c'est la « moyenne » des carrés des résidus.

$$RMSE = SRes / (n - p - 1)$$

Avec:

n: nombre d'individus

p : nombre de variables explicatives(n-p-1) : nombre de degrés de liberté

La régression est d'autant meilleure que le RMSE est petit

Le F-ratio

$$F = n * SReg / SRes$$

Cas des régressions multiples

$$F = (n-p-1) * SReg / (p * SRes)$$

Le R²

$$R^2 = SReg / (SReg + SRes)$$

Dans le cas de la régression linéaire simple :

R = coefficient de corrélation de Pearson

La régression est d'autant meilleure que le R² est proche de 1

Le R² ajusté

Dans le cas des régressions multiples, on utilise le « R² ajusté » plutôt que le R² qui croit avec le nombre de variables, ce qui rend son interprétation biaisée.

$$R^2$$
 ajusté = $1 - (1-R^2) * (n-1) / (n-p-1)$

La régression est d'autant meilleure que le R² ajusté est proche de 1

Analyse de la variation des résidus

On analyse le nuage de points avec Y en axe horizontal et les résidus en axe vertical.

- Une répartition régulière des résidus doit donner une bande horizontale régulièrement répartie autour de 0.
- Autocorrélation des résidus. Si on tend à avoir une courbe et non plus une bande, cela veut dire que certaines valeurs seront sur-estimées tandis que d'autres seront sous-estimées.
 - L'autocorrélation se repère grâce au test de Durbin-Watson. Ce test calcule la somme des $(Ri-Ri-1)^2$ / somme $(Ri)^2$. Cette valeur est comprise entre 0 et 4, < 2 pour des corrélations positives, > 2 pour des corrélations négatives.
 - Il faut un test de **Durbin-Watson compris entre 1,5 et 2,5** pour que l'autocorrélation soit acceptable.
- Autocorrélation des valeurs absolues des résidus. Si on tend à avoir un « cône » et non plus une bande horizontale, autrement dit, une augmentation ou une diminution régulière des résidus, il est recommandé de remplacer les moindres carrés ordinaires par les moindres carrés pondérés.

Ce « cône » se traduirait par une droite en faisant un nuage de points entre Y et la valeur absolue des résidus.

Lecture des sorties de Clementine

Récapitulatif

Il donne l'équation de régression linéaire

Statistiques descriptives

Moyenne et écart-type avec le nombre d'individus pris en compte (N).

Corrélations

Coefficient de Person = R

Récapitulatif

 R, R^2, R^2 ajusté, avec $R^2 = SReg / (SRes + SReg)$

 $Erreur\ standard\ de\ l'estimation = Racine\ (SRes\ /\ dll(Res)\) = Racine\ (RMSE)(cf.\ ANOVA).$

Critère de Durbin-Watson.

Mesures de l'ANOVA

L'ANOVA, c'est l'analyse de la variance.

Somme des carrés des régressions : somme des carrés des décalages estimé par rapport à la moyenne de Y : SReg

Somme des carrés des résidus (on peut vérifier le résultat en faisant le calcul « à la main » avec Clementine) : SRes

Carré moyen des résidus : SRes / ddl(res) = RMSE

Carré moyen des régressions : SReg / ddl(reg)

F: SReg * dll(Res) / (SRes * dll(Reg))

ddl: degrés de liberté

Statistiques des résidus

Prévision et résidu.

Résidu min : pour voir de combien la prévision peut être décalée vers le bas.

Résidu max : pour voir de combien la prévision peut être décalée vers le haut.

Ecart-type du résidu : pour voir une sorte de résidu moyen (puisque la moyenne vaut 0). A comparer avec l'écart-type et l'amplitude de la prévision de la prévision.

Conclusion : principales méthodes de modélisation qui n'ont pas été abordées

Classification

Les réseaux de neurones

Prédiction

Analyse discriminante

Régression logistique

Réseaux de neurones